严寒地区长间歇高拱坝混凝土工程冬季临时保温技术

水利水电第四工程及有限公司 郭万福

摘要:因新疆维吾尔自治区干燥少雨、蒸发量大、早 晚温差大、冬夏冷热悬殊、冬季大体积混凝土无法施 工。本文就目前正在建设 100m级以上混凝土双曲拱坝 大体积混凝土冬季临时保温经验进行总结和分享,为 严寒地区修建百米级高坝混凝土坝越冬保温提供设计 及施工经验。

关键词:高拱坝;混凝土;保温技术

DOI: 10. 12433/zgk jtz. 20232739

一、工程概况

本工程为"十三五"期间"172项"重大水利建设工 程。枢纽由混凝土拱坝、水垫塘及二道坝、发电引水系 统和电站、生态放水洞、过鱼设施等建筑物组成,水 库总库容 3.68 亿m3。大坝挡水建筑物采用混凝土双 曲拱坝,1级建筑物,坝顶高程880.5m,建基面高程 713.00m, 最大坝高 167.5m, 坝顶全长 288.4m。枢 纽工程大坝混凝土浇筑总量 90.87 万 m³, 主体大体积 混凝土采用P.MH42.5级中热硅酸盐水泥配制,采用 石料场的灰岩骨料。因当地冬季寒冷,冬季最低温度 在-20℃以下,每年冬季11月~次年3月混凝土停止 施工后,为了降低越冬期大坝混凝土因内外温差过大 而发生开裂的风险,同时使越冬仓面下部混凝土在来 年浇筑上层混凝土时仍保持较高温度,减小上下层温 差(设计允许上下层温差 16℃), 大坝混凝土上下游永 久面采用喷涂 10 cm 厚聚氨酯永久保温, 大坝混凝土 坝面采用临时保温措施。

二、水文及气象条件

拱坝为地处严寒、强震区的高拱坝,多年平均气 温为7.7℃,极端最高气温为41.6℃,极端最低气温 为-36.4℃, 极端最大温差为 78℃, 最大冻土深度为 141 cm。坝址区气候条件恶劣, 夏季炎热, 冬季干冷, 具有气温年变幅、日变幅大、气温骤降频繁,冬季越冬 期长(长达5个月)、太阳辐射热强、气候干燥等特点, 对混凝土表面保温防裂不利。枢纽气象站要素统计如 表1所示。

三、大坝越冬保温

(一)越冬保温施工

大坝从 2021 年 8 月 21 日开始浇筑至 2021 年 10 月 19 日因最低温度低于 0°, 停止浇筑, 只浇筑了 3 个 坝段混凝土; 其中, 7#坝段浇筑高程为713~719m, 浇筑高度为6m;8#坝段浇筑高程为713~725m,浇 筑高度为 12m; 9#坝段浇筑高程为 713~721m, 浇筑 高度为8m。越冬前对大坝临空面(上下游坝面、横缝 面和越冬仓面)按设计要求越冬保温,主要保温方案 如表2所示。

表 1 枢纽气象站要素统计														
项目	单位	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月	全年
平均降水量	mm	3.7	4.3	7.4	10.9	15.2	13.4	12.9	11.3	8.1	6.2	3.9	5.7	103
水面蒸发址	mm	21.7	40.6	161.7	313.8	498.3	557.8	554.3	488.7	328.7	224.2	68.4	23.8	1488.4
平均气温	°C	-15.7	-11.4	0.6	11.5	19.2	24	25.5	23.7	17.7	8.6	-0.9	-10.5	7.7
月平均最高气温	$^{\circ}\mathbb{C}$	-10.3	-5.2	6.3	18.9	26.3	31	32.7	31.1	25.2	15.I	3.4	-7.3	32.7
月平均最低气温	°C	-20.6	-17.8	-4.4	5.3	12	16.7	18.4	16.5	10.8	2.7	-5	-15	-20.6
极端最高气温	°C	9.5	10.8	22	33.3	38.6	40	41.6	40.8	37.8	28.6	17.2	7	41.6
极端最低气温	$^{\circ}\mathbb{C}$	-36.4	-35.1	-22.7	-10.1	-1.9	5.4	10.3	5.8	-3.3	-7.8	-26.6	-35.6	-36.4
极端最高地面气温	°C	15.1	27.8	44.2	56.4	68.9	70.3	71.3	68.8	62.8	46.6	29.6	16.6	71.3
极端最低地面气温	°C	-39.8	-38.2	-27	-13.1	-6	1	6.9	2.1	-9.5	-14.1	-31	-38	-39.8
平均相对湿度	%	79.6	77.5	67.7	49.9	44.9	46.6	50.5	50.9	52.5	61.8	74.6	81	61.5

表 2	越冬期坝面临时保温方案

部位	实施保温措施	等效放热系数 (kJ/m²·h·K)
9 坝段上游面、8# 坝段上下 游面和横缝面	塑膜 +8cm 厚 XPS 板 + 2cm 厚聚乙烯保温被 + 三防布	1.11
8# 坝段上下游面和横缝面 (722.5~726.0m)	塑膜 +8cm 厚 XPS 板 +2×2cm 厚聚乙烯保温被 + 三防布	0.96
7# 坝段越冬仓面	薄膜 +8cm 厚聚乙烯保温被 + 三防帆布 +8cm 厚聚乙烯保温被 + 薄膜 + 2 层棉被 + 三防布	0.80
8# 坝段越冬仓面	薄膜 +1 层棉被 +8cm 保温杯 +6 层棉被 + 三防布	1.05
9# 坝段越冬仓面	薄膜 +8cm 厚聚乙烯保温被 + 三防布 +8cm 厚聚乙烯保温被 + 薄膜 +6 层棉被 + 三防布	0.68
8#-6 仓多卡模板	面板外侧粘贴 2 层 3cm 厚橡塑海绵,模板底部三脚架部位薄膜 +8cm 厚聚乙烯保温被 + 三防布	1.25

(二)保温监测

为了监测坝体混凝土的温度变化,在每仓混凝土 内部埋设3支温度计。监测和评价7#~9#三个坝段 的越冬仓面、8#坝段左右横缝面和上下游坝面的保 温情况、8#坝段721廊道内部气温,以及7#坝段和 9#坝段岸坡基岩面的保温情况,在7#~9#三个坝段 越冬仓面的上、中、下游各布置1支温度计,在前述其 他部位各布置1支温度计。为了监测和评价水平仓面 与上游立面衔接部位的保温情况,在7#~9#三个坝 段越冬仓面中部距离上游坝面 0.2m的位置各布置 1 只温度计。

(三)监测结果统计和分析

从 2021 年 10 月 20 日停止混凝土浇筑至 2022 年 4 月7日第一仓混凝土开始浇筑,气温和混凝土典型仓 号内部温度关系曲线如图 1 所示。从图中变化规律可 知,随着外界气温逐步降低,混凝土内部温度随着气温 变化也逐步降低,至2022年3月24日温度开始回升。

图 1 气温与混凝土内部温度变化

从 2021 年 11 月 18 日 0:00 时开始至 2022 年 2 月 7日14:00时(多支温度计测值达最低)结束,三个越 冬坝段混凝土内部温度及表面温度计测值总体呈下降 趋势,下降幅度及测值日变化幅度如表3所示。

表 3	越冬期各	仓混凝土内]部温度变位	化幅度

仓号	仓面高程 (m)	越冬开始混凝土内部平 均温度(℃)	越冬期混凝土内部最 低温度(℃)	最低温度发生时间	降温幅度(℃)
7#-01	713~716.5	17.0	12.8	2022.3.24	4.24
7#-02	716.5~719.5	20.1	10.7	2022.3.24	9.4
8#-01	713~714	15.9	13.1	2022.3.24	2.8
8#-02	714~717	18.1	12.7	2022.3.24	5.4
8#-03	717~720	16.5	10.5	2022.3.24	6.0
8#-04	720~721	14.7	6.1	2022.3.24	8.6
8#-05	721~722.5	19.7	7.0	2022.3.24	12.7
8#-06	722.5~725.5	16.5	2.7	2022.3.24	13.8
9#-01	713~714.2	16.1	14.0	2022.3.24	2,1
9#-02	714.2~717.2	20.2	13.0	2022.3.24	7.2
9#-03	717.2~721	17.4	10.1	2022.3.24	7.3

从表3可以看出,三个坝段随着外界温度下降, 内部温度也在逐步降低,降温幅度最大的为8#-5仓 及 8#-6 仓, 温差分别为 12.7 ℃和 13.8 ℃。主要原因 该两仓混凝土 721 m以下左右侧为浇筑的 7 #、9 # 坝 段,上下游和建基面接触,721m以上四周均暴露在外 界。另外,在721m高程布置有721灌浆及排水廊道、 纵向联系廊道,通气孔等,施工时保温被没有遮盖严 实, 造成降温幅度过大。7#、9#坝段温度降幅较小 原因是左右侧及上下游均和建基面接触,中间和8# 坝段衔接,未脱离基坑齿槽。越冬期各仓保温被底部 温度变化幅度, 见表 4。

表 4 越冬期各仓保温被底部温度变化幅度 $(2021.11.18 \sim 2022.2.07)$

位置	起始时间 测值(℃)	终止时间测 值(℃)	起始-终 止(℃)	降幅
7# 坝段上游	7.58	3.49	4.09	54%
7# 坝段中间	8.62	0.05	8.57	99.4%
7# 坝段下游	8.59	3.20	5.39	62.7%
8# 坝段上游	9.5	0.00	9.50	100%
8# 坝段中间	8.0	-3.76	11.76	147%
8# 坝段下游	11.10	0.60	10.50	94.6%
9# 坝段上游	17.20	11.48	5.72	33.3%
9# 坝段中间	14.60	7.33	7.17	49.4%
9# 坝段下游	14.71	8.22	6.49	44.1%

在三个越冬仓面中,温度测值下降幅度最小的为 9#坝段, 其次为 7#坝段, 降幅最大的为 8#坝段, 结 果与表 2 所示 7#~9#三个坝段仓面越冬保温层的等 效放热系数的大小一致。

8#坝段降幅最大的主要原因: 一是 8#-5~8#-6 坝体四周均为临空面,河谷风大,局部气温低,温度损 失快;二是8#-5坝段浇筑完成后悬臂模板没有拆除, 模板外侧包裹聚乙烯保温被及密封三防布密封效果不 佳; 三是8#坝段721廊道口两侧及8#-5坝段集水井 通气孔均在坝体表面外露,保温密封不严加剧混凝土 内部温度流失。另外,与8#坝段最上部两仓混凝土 四周为临空面,而且(廊道、集水井、吊物孔、排水管) 等贯穿和布置有关。7#坝段中间降幅达到99.4%,主 要原因市大面积渗水,棉被被渗水浸湿后保温效果大 幅降低有关。

四、保温被拆除及异常情况处理

2022年3月24日大气平均气温达到3.2℃以上。 为了确保大坝混凝土能够在4月1日按时浇筑,首先 将7#、9#坝段保温被白天高温时段择机清除,并深 凿毛处理, 凿除后立即覆盖保温被; 因8#坝段内部温 度较低, 采取水箱加热水通水, 通水温度 15℃, 直至 4 月7日,8#坝段混凝土内部温度分别达到11.25℃和 10.17℃。满足上下层混凝土温差不超过15℃要求,开 始浇筑混凝土。

五、结论和建议

(一)结论

越冬保温拆除后,在坝体混凝土各部位(越冬仓 面、上下游坝面、横缝面、坝内各孔洞墙面等)均未发 现裂缝。这表明,从防止坝体混凝土因内外温差过大 而发生裂缝的角度来讲, 坝体混凝土各部位越冬保温 达到了预期目的。但从满足上下层温差角度讲,8#坝 段越冬仓面温度降幅最大,混凝土内部温度不能满足 来年浇筑上层混凝土时温差要求,说明保温效果不佳; 从节约成本角度讲,在7#、9#坝段越冬仓面临时保 温均满足要求的情况下,采用二层棉被可以节约成本。

(二)建议

越冬前完成浇筑的混凝土,应当将模板全部拆除 后进行越冬保温,增加越冬保温密封性,同时要控制 越冬保温施工质量,尤其加强廊道及空洞部位的保温 密封性,确保不漏风。越冬仓面不能有长流水或积水, 为防止雪水消融渗入保温层,顶部增加一道塑料薄膜 防渗,并要控制好最顶部防水密封层铺设及搭接质量。

参考文献:

[1] 马生龙.浅析工程测量在JH二级枢纽混凝土高拱坝 中的运用[[].陕西水利,2020(9):268-270.

[2]张海军.建筑技术中外保温技术研究Ⅲ.装饰装修天 地,2016(02):239-239.

作者简介:郭万福(1971),男,青海省西宁市人, 本科, 高级工程师, 研究方向为大坝混凝土温控。