自动化控制技术下的智慧大棚设计与应用

中国长江三峡集团有限公司流域枢纽运行管理中心 张文郁 李勇泉 吴鹏

摘要: 我国南方地区与北方地区存在较大的温度、气候差异,使得珍稀濒危植物在不同区域表现突出的分布特征,意味着自然环境是保障生长的关键条件,人工操作难免存在一定误差,为此,借助智慧大棚的建设彻底实现自动化温湿度调控,不仅能实现对人力成本的控制,还能有效提升生产效率。基于此,本文以珍稀植物保护为目的,基于自动化控制技术下设计智慧大棚,并通过实际应用证实该系统的可操作性。

关键词:珍稀植物;自动化控制;智慧大棚

受到人类活动扩张、气候变化以及外来物种侵袭 等因素的影响,导致生物多样性面临着前所未有的挑 战,为此,保护生物多样性成为一项重要的工作。珍 稀濒危植物具有数量稀少和牛境特殊等特点,一直以 来都是植物起源研究、古地质变迁以及区系演化等的 重要证据,保护珍稀濒危植物是保障生物多样性的重 要基础,也是保护野生生态资源的关键措施。近年来, 随着珍稀濒危植物保护工作的全面推进,温室大棚技 术成为优化珍稀植物生存环境、延长植物存活率和提 高优良率的重要方法,但传统的温室大棚要通过人工 检测和调节环境, 难免出现错漏, 影响脆弱珍稀濒危 植物的生长。在现代科学技术发展的影响下,自动化 控制技术迅速崛起,并在各种工业机械领域广泛运用, 获得了学界以及各领域企业的共同认可。为此,将这 项成熟的技术应用到温室大棚中, 打造全新的智慧大 棚,增强温室大棚的自动化和智能化性能,使珍稀濒 危植物得到合理化、科学化的保护。

一、珍稀植物保护智慧大棚需求分析

优秀的珍稀植物保护智慧大棚必须结合实际情况,在使用期间应操作简单,能被广大农户快速掌握, 又能更好地适应周围环境。为此,该系统要满足以下 需求:

温度控制:温度是保障珍稀植物生长的关键因素,在不同时间段能根据植物的生长特性调整温度参数,有利于植物的生长。目前,温室大棚在温度调整上主要通过通风、遮阳等方式实现。通常情况下,大棚室内温度控制在16°左右,但部分植物可能需要更高的温度,这就需要适当调整。

湿度管理:大棚的湿度条件也会直接影响农作物的生长,为此,要结合空气湿度实现有效管控,如果需要加湿,可以适当浇水。

光照强度调整: 光照是植物日常光合作用的重要 因素,可以借助黑布遮挡板调整光照。

二氧化碳浓度控制:二氧化碳主要应用于植物的 光合作用,适当的二氧化碳浓度能提高植物光合作用 的效果。

二、珍稀植物智慧大棚系统设计

(一)控制系统总体架构

珍稀植物保护智慧大棚系统主要基于自动化控制 系统技术,打造针对温湿度、光照强度和环境监控的 数据采集、传输、分析和调控的现代温室大棚,总体结 架构如图 1 所示。

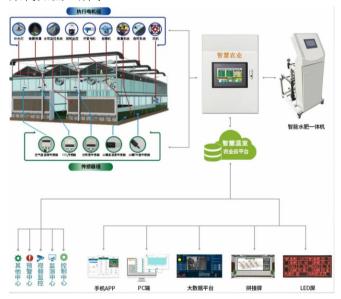


图1 智慧大棚总体结构

(二)珍稀植物智慧大棚系统主要功能

1.环境参数的测定与调控

光照强度测试:植物的光合作用无法离开光照, 为此,合理的光照强度非常关键,通过光照传感器监测光照,配合补光系统、照明系统、遮阳板的调整提升 光照强度在整体控制效果。

温湿度测试:植物的正常生长必须要有良好的温湿度条件,需要动态测量室内温湿度,并结合测量结

果活时调控。

智慧大棚卷帘和排风系统控制:智慧大棚中的温 度、光照和湿度都需要由排风扇以及卷帘调整,为此, 大棚控制系统必须结合室内各项参数变化准确调整。

二氧化碳浓度测量: 植物的光合作用会直接影响 其生长,适当的二氧化碳浓度能帮助植物更好的完成 光合作用,为此,智慧大棚应实现对室内二氧化碳浓 度的调控,找到更适宜珍稀植物生长的二氧化碳浓度。

2.智慧大棚数据样本采集

根据上述需求,针对数据样本实施采集是保障环 境数据测试和采集的重要功能。但需要注意的是,珍 稀植物对生存环境的要求更高,不能用某个采集数据 作为整体的数据信息。如果通过人工的方式调整大棚 环境参数,不仅效率低,采集到的数据也容易丢失、重 叠。为此,可以通过环境传感器收集数据。

3. 涌信模块的应用

通信模块是确保本系统实现现代化、智能化运作 的核心模块, 借助 5G通信能完成对各项数据的传输 和指令的发布。本系统主要通过物联网ZigBee通信技 术实现通信运转,该项技术已非常成熟,有着较高的 稳定性和传输效率,是现阶段应用范围较广的通讯模 块。ZigBee模块主要通过序列扩频的方式发送数据, 另一个模块能实现对数据的准确快速接收,完成摄像 头驱动、短信发送、数据存储和传输等各项通信服务。

4.智慧大棚数据平台

主要通过浏览器/服务器构建Java平台的主流数 据访问平台,用户可以经由任意的网络PC端口进入浏 览器, 登录智慧大棚的数据平台, 获取数据信息, 此数 据平台需要基于Java Web服务器构建,形成底层数据 库,还可经J2EE平台发布相关信息。

5.Android 平台应用

通常情况下,设备的控制界面直接配置在设备上, 当需要控制设备的过程中,必须由专人到设备旁监控 和操作,但载入手机移动端后,可以提升整体灵活性。 为此,为了提升智慧大棚的性能,系统搭建并载入设 备控制软件,通过移动端获取信息,并通过端口控制 电气设备。

(三)智慧大棚控制系统软硬件配置

智慧大棚的控制系统软硬件配置主要包括采集设 备与控制电路两部分,总体硬件设计采取模块化的设 计处理思路,模块化的设计方案能确保系统后期升级 与扩展需求,硬件部分的控制设备主要包括单片机最 小系统的开发、不同传感器的数据采集和电路设计等, 在整个系统运作中,数据的收发是关键,它能完成安 卓系统与下位机之间的数据通信服务。

1. 主控制器

MCU主控单元主要运用STM 32 F103 x8 系列芯 片,型号为STM32F103R8T6,具有处理速度快、存 储容量较大、芯片接口数量较多以及多通道等特性。 智慧大棚控制系统配置的控制器对串口的数据有着较 高需求,而本文采用的芯片不仅能有效控制时序,还 能实现低功耗、稳定电压输出的效果。

2. 传感器

温湿度传感器集成模块主要运用环境传感器 DHT11, 通过I/O控制器出口完成通信连接; 光照 传感则运用BH1750FVI元器件,具有较高的光照强 度反馈敏锐度,通过两根线访问光照强度传感器寄 存器;二氧化碳传感器模块运用T6004,具有结构完 整、结构小等特点。通过传感器的调配运用,可结合 温湿度要求,实现温湿度、土壤温湿度和光照的调 控。例如: 将空气温度设置为 20 ~ 25℃, 湿度设置 为80%~90%,光照设置为500lx,二氧化碳设置为 0.03%。同时,基于算法完成以下设定:(1)以二氧 化碳在空气中的值相对恒定,优先级设定为最低,但 可设置报警等级。(2)光照度会直接影响空气温湿度, 它作为执行命令最高级, 优先开启外遮光。此时设置 时间阀值, 开启 1h。(3) 湿度监测低于 80%或开启湿 帘加湿; 如果高于90%不执行动作。(4) 温度监测, 当高于25℃时, 开启通风或内循环。(5) 场景模式在 季节变化时,对传感器执行有优先级的排序。此项指 令会在环境参数变化时循环执行,以此确保植物生长 的最佳环境。

3. 通讯模块

系统采用的通讯模块主要包括网络透传、 HTTPD、短信息三种运作模式, 因网络透传的运作 效率较高,以此作为主要通讯模式,本系统主要采取 Socker编程如图 2 所示。

三、智慧大棚控制系统的应用

通过PC端浏览器和手机端口登录智慧大棚数据 平台,可通过大屏数据看板实时监控室内以及室外的 温度、湿度、二氧化碳、光照度等参数。大屏使用折线 图展示每个棚的温湿度变化,中部区域为根据实际场 景和环境搭建三维立体数字孪生应用场景,如图3所 示。同时,实时掌握各种设备运作情况,以小卡片列表 的形式显示数据,一个设备用一张卡片显示,支持按 照状态/设备类型/空间区域进行数据筛选。在日常管 理中,系统根据具体的业务配置业务规则,并在告警 工单中处理对应的工单信息、告警工单的详情,详细 查看到触发告警的设备、设备数据以及相关信息,如 图 4 所示。

26

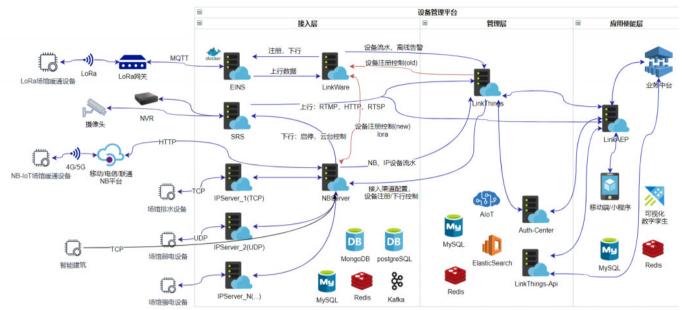


图2 自动化控制系统服务架构与数据流

图3 自动化控制系统的运作主屏

图4 设备监控

四、结语

综上所述,本文根据珍稀植物保护的需求,设计了基于自动化控制技术下的智慧大棚,提升温室 大棚管理精准性和智慧性,能实现远程操控和管理 以及阈值报警,为珍稀植物的保护提供现代化的保护策略。

参考文献:

[1]胡青荻,郑坚,李其佐,等.珍稀濒危植物笔筒树生境调查及保护建议[J].中国农学通报,2022,38(26):39-43.

[2]张莎,蒋谦才,叶冬梅,等.广东中山香山省级自然保

护区珍稀濒危植物现状及保护对策[J].林业科技通讯,2022(09):67-69.

[3]李国鑫,柴西林.多节点分布式智慧农业大棚监控系统设计[]].软件,2022,43(05):56-60.

[4]陈治瑀.智慧温室大棚的环境监测与控制技术研究[J]. 农机使用与维修,2022(05):123-125.

[5]吴佳伟,朱桂兵,王成,等.基于PLC的小型智慧大棚蔬果生长环境监控系统设计[[].福建农机,2022(01):11-15.

[6]李颖.基于LoRa技术与云技术的智慧农业系统设计与实现[J].网络安全技术与应用,2022(01):123-124.

27